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1. Pointing Accuracy of the Low-Cost Large Space Telescope Due to
Noise and Quantization

1-1. Introduction

The objective of this study is to conduct an investigation on the

pointing stability of the low-cost Large Space Telescope (LST) system.

The low-cost LST is characterized by the use of reaction wheels for

the generation of control torques. Because of the critical requirement

on the pointing accuracy of the LST, the nonlinear frictional characteristics
of the bearings of the reaction wheels cannot be neglected. It is well

known that the nonlinear friction can cause limit cycles in a closed-Toop
system.

Another possible source of pointing error in the LST is due to the
effect of quantization and sensor noise. Since the LST is a digital
system, D-A and A-D converters, and sensors for positional and rate
feedbacks are used. Sensor noise and amplitude quantization will also
cause pointing error in the LST. In addition, quantization is a
nonlinear phenomenon so that it may also cause self-sustained oscillations
in the closed-1oop system.

The dynamic modeling of the single-axis LST is described in this
chapter. Several methods of evaluating the attitude error of the digital

LST due to quantization and noise inputs are given.
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1-2. Dynamic Models of the Low-Cost LST System

The dynamic model of the single-axis low-cost LST system with
sampled data is shown in the block diagram of Fig. 1-1. The rigid
body is represented by the double-integrator transfer function. The
controller is formed by proportional, rate, and integral feedbacks of
the vehicle attitude. The nonlinear element N in the rz2action wheel
dynamics represents the rolling friction, and its functional description
is given by the well-known Dahl model.

The definitions of variables and the values of parameters and

constants are tabulated in Table 1-1 [13.

by

Table 1-1.
¢c Reference input command
bg Body attitude of LST
&B Body rate of LST '
TC Torque command of reaction wheel
TRw Torque output of reaction wheel
éRw Angular velocity of reaction wheel
ORN Angular displacement of reaction wheel
TF Frictional torque of reaction wheel
oo Attitude error
Kp Proportional gain of controller 1.65 x 106 N-m/rad
KR ‘ Rate gain of controller 3.71 x 105 N-m/rad/sec
KI Integral gain of controller 7.33 x 105 N-m/rad/sec
Rp Feedback resistance 0.484 ohms ;
KA Voltage amplifier gain 10000 é
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Ky Motor torque constant 0.484 N-m/amp
KB Back emf constant 0.484 volt/rad/sec
JRN Moment of inertia of reaction wheel 0.2 Kg-m2
JV Moment of inertia of vehicle about 2
pitch axis 41822 Kg-m
T Motor time constant 0.002 sec
RT Motor resistance 10 ohms

Although the low-cost LST system has digital control, it is
informative to analyze the system of Fig. 1-1 first without the sample-

and-hold device. Figure 1-2 shows the signal flow graph of the continuous-

data LST systei. The characteristic equation of the system is determined

R A9 0 e ey

i from Fig. 1-2, §
- | ) AR i
. where
? G] = Kp + KI/s
; G2 = KA/s
3 3 R + (] + Tms)
.1
Gy = 3,5
=1
G5 T s
1
G, = =——
6 JRHS
=1
G; =3

and N denotes the analog describing function of the reaction wheel nonlinearity.




ol ARG ¢y S  §aE n E R A

‘waysks 18%
1500-M0] VUP-SAONULIUOD BYY JO ydeab Moy (eubys °Z-| dunbyy

Uy,
_sm ty
Mg
&
% 8.
® (3 () ol Fg! —
g, U 8, Sy 8 by W € 2
uz'

7 B P Y

W4y )

SRR R < e

L e h e nn s A E




N «w:sw{sil‘t«i!wml

e

VN S IR ST

6
For the linear model of the LST system, we set N = 0, and the
characteristic equation becomes
K, K,J
5 4 ‘v, 3 2
rvaRTs + J R+ (JVRFKA + —iﬂiz—)s + RFKRKAS
+ KARFKps + KAKIRF =0 (1-2)
It is of interest to investigate the dynamics of the reaction wheel
and the vehicle. The open-loop transfer function between TC and o is
¢ R.K
£ — F A e (1-3) ;
c V i
J,s (Rf‘ns + Res + K, + ";Rﬁ)
i
Substituting the system parameters into Eq. (1-3) gives
¢ _ 5.7865 o
T 2,.2
¢ s5(s® + 500s + 242058.5)
= 5- 7865 (1_4)
$2(s + 250 + §423.74)(s + 250 + j423.74)
Thus, the reaction wheel is shown to have relatively fast dynamics.
Substitution of the values of the system parameters into Eq. (1-2),
and simplifying, the characteristic equation of the linear LST system is
written
5 4 500st + 242058.553 + 2.1468 x 10852 + 9.5476 x 10°%
+4.24185 x 10° = 0 (1-5)

The roots of the characteristic equation are:




AR - 0
~

s = -0.49659

s = -4.22743 + j4.25123
s = -4.22743 - j4.25123
s = -245.524 + j421.118
s = -245.524 - j421.118

Note that the damping ratio of the dominant complex roots is
0.705, and the natural undamped frequency is 6 rad/sec or 0.954 Hz.
These parameters are achieved by selecting the controller constants Kp,
KR and KI at the indicated values. However, the poles of the reaction
wheel dynamics at s = -250 + j423.74 and s = -250 - j423.74 are only
slightly affected by the body controller and they account for the charac-

teristic roots at s = -245.524 + j421.118 and s = -245.524 - j421.118 of

wetresre S .
i g bbb b Ak s s

. the overall closed-loop system. Since these fast roots are very far away

from the dominant ones, this means that for all practical purposes the

% dynamics of the reaction wheel can be neglected as far as the linear
system is concerned. Figure 1-3 shows the block diagram of the simplified
continuous-data low-cost LST system, and the digital system is shown in
Fig. 1-4.

The closed-loop transfer function of the continuous-data system of
Fig. 1-3 is

B s) Kps + KI

(
7 = (1-6)
{s) 3 2

va + KRs + Kps + KI

For the digital system of Fig. 1-4, the closed-loop transfer function

is written

i
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. Figure 1-3. Simplified continuous-data low-cost LST system. P
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Figure 1-4. Simplified digital low-cost LST system.
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¢B(z) ) GA(Z)GB(Z) (1.7)
o.(z) ~ T +6_(z) + Gy(2)6,(2) B
where
= -Ts
- Gho(s):]-se
K:s + K Kz +KT-K
6a(2) =3 (6poGy) = 00 - Z-])Sl : 2 I] - Ph—* (1-8)
2
(2) = (6, 6,8¢) = (1 - 27 )p[s| = T2 2 1) (1-9)
6g(2) = §(6,,46,85) z 3[vasl 20,0z - 1)
6e(2) = 3 (6,564Kg) = Kyl -z")&——]—— e N (1-10)
c ho 4 vaz Jv z-1
Equation (1-7) is simplified to
= @B(z) TZ(KPZ2 + KITz + KIT - 52)

P (2) 3,2 2 2 3 2
c 23,27+ (T Ky + 2K T-6d,)2°+ (6, - 4K T+ T K T)z + (2K T+ KT -29, - KT )

R R
(1-11)
The characteristic equation of the system is
20,2° + (szp + 2KeT - 6027 + (63, - 4K.T + TK))z
+ 2T+ KT - 20, - KT2 = 0 (1-12)
R I v P

Or,

gé
E
E
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6.2

+ (1.65 x 10572 + 7.42 ¥ 10°T - 2.50932 x 10°)22

+ (2.50032 x 10° - 14.80 x 10°T + 7.33 x 10°T)z

+ (-8.3644 x 10

4 5 5:3

e 7.82 x 1057 + 7.33 x 10573 - 1.65 x 10°7%) = 0

(1-13)

The characteristic equation roots are tabulated below as functions of

the sampling period T:

T (msec)
0.1 1,
0.5 1,
1 1,
5 0.998,
10 0.995,
25 0.987,
50 0.975,
100 0.950,
120 0.940,
150 0.925,
170 0.915,
180 0.910,
200 0.900,
220 0.890,
230 0.885,

T.

Roots

4

0.998 = j0.0025

0.998 + j0.0022
0.996 + jO.0043
0.979 + j0.0208
0.957 + j0.0411
0.889 + j0.0988
0.766 + jO0.1825
0.483 + j0.2901
0.356 = j0.300

0.150 + jG.260

0.0034 + j0.144

0.049, -0.195

0.107, -0.571

0.1116, -0.9078

0.1085, -1.077 (unstable)

The root loci of Eq. (1-13) are sketched in Fig. 1-5 as a function of

For small sampling periods, the characteristic roots are all located near
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1-3. Effects of Quantization on Pointing Stability of the Low-Cost LST -
Limit Cycle Conditions

Quantization occurs at at least three places in the LST system. Two
are at the displacement sensor and the rate sensor where A-to-D converters
are used. A quantizer is also needed at the control torque input to the
reaction wheel since D-to-A conversion is effected there. In addition, if
the integral control KI/S is implemented digitally, quantization should be
considered in the digital controller as well. Figure 1-6 shows the digital
LST system with quantizers. The z-transfer functions are defined in
Egqs. (1-8), (1-9), and (1-10). The quantizers at the displacement
sensor, the rate sensor, and the reaction wheel control torque are denoted
by Qp, QR, and QT’ respectively. The input-output relation of a quantizer
is shown in Fig. 1-7. The gquantization level is represented by h.

We shall analyze the effects of quamtization on pointing stability
or accuracy of the LST by means of three different methods. The first
method utilizes the deterministic approach and establishes a leas: upper
bound on the pointing error due to quantization. The second method relies
on treating the quantizer as a noise source, and statistical analysis is
applied. The third method is also a statistical approach which represerts
the quantizer by a linearized gain Keq(z).

1t should be pointed out that a system with quantization is a nonlinear
system and its behavior cannot be predicted by linear theory. One of the
well-known phenomena of a nonlinear system is that sustained oscillations
may occur. When a digital system has several quantizers, it is extremely

difficult to predict the condition of self-sustained oscillations.
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To illustrate the effects of quantization, and how quantization can
cause sustained oscillations in an otherwise stable linear system, let
us refer to the digital systems shown in Figs. i-8 and 1-9. The difference
between the two systems in Figs. 1-8a and 1-9a is that the former has
negative feedback and the latter has positive feedback; but both systems
are stable.

For r(k) = 0, both linear systems have zero steady-state values for
c(k); that is, c(k) = 0 for k>, for arbitrary initial state c(0). We
shall show that when gquantization is considered, the system in Fig. 1-9
has a steady-state error, whereas the system in Fig. 1-8b exhibits a
sustained oscillation.

Let the quantization level h be 2, (Fig. 1-7). The state equation

of the system in Fig. 1-9b is
c(k+1) = Q[0.9c(k)] (1-14)

For ¢(0) = 10, it can be easily shown that c(k) = 2 for k > 8.

The state equation of the system in Fig. 1-8b is
c(k+1) = Q[-0.9¢c(k)] (1-15)

For c(0) = 10, c(k) = 2 for k > 8 even, and c(k) = -2 for k > 8

odd. Thus, the state of the system oscillates between -2 and +2.

S o e
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r(k) c(k+1) -1 c(k) r(k) c(k+1) -1 c(k)
2 - > z e
+
-0.9 9.9
(a) Linear system (b) System with guantizer
Figure 1-8. Systems with quantizers.
r{k) c(k+1)f R c{k) r(k) kc(k+1) -1 c(k)
> 2z ] z ‘ Regl
+
0.9 0.9 e
(a) Linear system (b) System with quantizer
Figure 1-9. Systems with quantizers.
+h + M
2 K2
+
¢.(2) + o
n 6,(2) Ggl2) -

ha

he

Z

Figure 1-10. Digital LST system with quantizers replaced by

deterministic noise sources.
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1-4. Effects of Quantization on Pointing Stability of the Digital Low-
Cost LST - Least Upper Bound Quantization Error

in this section the effects of guantization on the low-cost LST
system are investigated using a Jeterministic approach. The method
of analysis is based on the "worst" error condition due to quantization.

In general, the analysis gives a conservative estimation of the quantization
error.

Since the quantization error has a maximum bound of *h/2, the "worst"
error due to quantization in a digital system can be studied by replacing
the quantizer in the state diagram by a branch with unity gain and an
external noise source with a signal magnitude of :h/2. The block diagram
of the digital LST system with quantizers shown in Fig. 1-6 is redrawn
in Fig. 1-10 with the noise seurces. The transfer functicns.sn(z), ﬁB(z}.
and Gc(z) are defined in Egs. (1-8), (1-9), and (1-10}, respectively.

The z-transform of the body attitude of the LST due to the three

quantizers when ¢C =0 1is

h he h
z '%QGA(Z) i 7;'t 7
°(2) = 7T TT G5(26502) + 6, (2) 82 (1-16)

*

Substitution of Egs. (1-8) through (1-10) into Eq. (1-16), and

simplifying, we have

[:—i-(Koz#-KIT- Kp)t 07—+-§;)(z-1)]T (z+1)
(

(1-17)

d,(z) =
B 2-1 3,42 2
24, z-1)7+7 (z+l)(sz*-KIT- Kp)*-ZTKR(z—l)

G Q1be e R S o i o

a
3
3

I S T
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The steady-state error of the body attitude due to the quantization effects

is obtained by applying the final-value theorem to Eq. (1-17), (if the

system is stable).

Thus,

-1 hp
(kT) = ¢am (1 - 2 )@B(Z) =t
rad!

Lim d (1-18)

ko

B

It is interesting to explore the significance of this result on
the error due to quantization. Firstly, the quantization error at the
displacement sensor is propagated through the system without change in
amplitude. Secondly, the errors due to the torque and rate sensor
quantizers are completely eliminated at the output position. This is

attributed to the integral control KI/s in the forward path.

Digital Implementation of Forumnrd Controller

If the proportional—plus-integral controller is implemented

digitally, the transfer function GA(z) becomes

TKI(z +1)
(1-19)

Gp(z) = Ky * 5z )

Substituting GA(z) from Eq. (1-19) into Eq. (1-16), we can again show

that the steady-state error in ¢B(kT) due to the three quantizers is
thD/Z, and the errors due to QR and QT are completely eliminated.

In reality, the digital implementation of the controller should
also include quantization in the digital process. Figure 1-11 shows
the block diagram of the LST system with guantizations also considered

in the digital controller. The z-transform of the body attitude of the

B e Mo e A

z
:
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LST due to the five quantizers when {c =0 is

h b h h
, 3 Galz) ¢ Sezzrly Ry T
- ¢ H c ¢ I -t C . _
tglz) = 777 TG, (2)6,(2) ¥ 6_(Z) Gg(2) (1-20)
c
where GA(z) is given by Eq. (1-19) and GB(z) and Gc(z) are given in
Eqs. (1-9) and (1-10), respectively.
Applying the final-value theorem to Eq. (1-20), we have
+ h, *+ h K. T h h
. iMoo, 2 -
24n:¢3(kT) 5T T (1-21)
k- 1 1

It is interesting to note that the introduction of the integral
control eliminates the noise signals that enter at all peints after the
integral control in the control loop; however, the digital implementation
of this control in turn produces a quantization error which is bounded

by ch/ZKIT, where h2 is the quantization level.

DR
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1-5. Effects of Quantization on Pointing Stability of the Digital Low-
Cost LST - Equivalent Noise Source, Statistical Analysis

cTr
)

In this section the pointing errors of the digital LST sysiem duc

to quantizations in the displacement, rate, and torque channels are
investigated by statistical means. The rms (root-mean-square) error

in b due to quantizations that are represented by equivalent Gaussian

noise sources with zero mean, or white noise sources, is determined by
setting % = 0. The results are then compared with those of the continuous-
data LST obtained in reference [1].

The block diagram model of the continuous-data LST with the quantizers
repiaced by equivalent noise sources is shown in Fig. 1-12. The equivalent
digital system is shown in Fig. 1-13. It is assumed that the equivalent
noise sources that represent the quantization operations are white, so

that their power spectral density functions in both the s and the z

domains are constants. Therefore,

¢D(s), ¢D(z) = ¢p = power spectral density of displacement quantizer
¢R(s), ¢R(z) = bp = power spectral density of rate quantizer
¢T(s), @T(z) = 0p = power spectral density of rate quantizer

Let the rms attitude error of the continuous-data LST due to )
be repres2nted by 9gp- The rms errors are given by the foilowing
relations:

Displacement:

o 172
ogp = {7}5[  My(s)My(-s)ds - ap (1-22)
-Jm
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Figure 1-12. Continuous-data LST with quantizers represented by
equivalent white noise sources.
s
6,(2) | 6g(2) >

OR(z)=oR

Figure 1-13. Digital LST with quantizers represented by equivalent
white noise sources.
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where MD(s) denotes the transfer function between @D(s) and @B(s),

¢B(s) Ks + KI
Mls) = 3Tt T2 (1-23)
c va + KRs + Kps + KI
Similarly,
Rate:
. 1/2
|l
Ogg = [‘2'1}3' I_jm MR(S)MR(-S)dS . d)R} (1-24)
Torque:
o 1/2
= {1 - . .
OBT = [Z'nj f-»jm MT(S)"T( s)ds (b-r} (1-25)
where
Mo(s) = M_( %) S (1-26)
- S = S = = -
R T orlsh g 83+ Ks® 4 Kys + Kp

This result is obtained with the assumption that the quantizer noise
is not multiplied by the sensor gain Kp, as in reference [1]; otherwise,
the right-hand side of Eq. (1-26) should be multiplied by KR.

The total rms attitude error due to all three quantizers is simply

the sum of the errors due to each noise source acting alone; that is,

og = Ogp * 9pgg * Ogr (1-27)

From Eq. (1-26) it is easy to see that 9gR and ogy have the same magnitude.

The line integral of the form of Eq. (1-22) can be evaluated by
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contour integration, and then the residue theorem. An integral table is
also available for the evaluation cf the contour integral. Using Eqgs.
(1-23) and (1-26), the vrms attitude errorsof the continuous-data system
are obtained as

K§+KK e

Opn = LR ¢
BD 2(KRKp - KIJV) D

(2.5748@0)]/2 = 1.605/3; (1-28)

" 1/2 |
_ ] 42, \1/2
opT = [Z—(RRKP X3 o = (0.8598 x 107 %;) o

; - 0.927 x 1078/ (1-29)
T ) -6 '
| Opr = 0.927 x 10 /5; (1-30)
% For the digital LST, the rms attitude errors are: ;
Displacement:
] 1y, 1/2
* =] — . -
oo = [ 23 § Mplamplz e e %) (1-31)
Rate: i
1 NS NS 172
* = | — . -
OER EZnJ § MR.z,MR(z Yz 'dz ¢R} (1-32)
Torque:
i 1 A1y /2
o = oy § Motz iz e - o] (1-33) ‘
g The transfer functions, MD(z), MR(z), and MT(z) are determined from o

s B2 BRGSO a gy
"
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Fig. 1-13
GA(z Gy z)
"0(2) = T35, (216, (2) ¥ 6.12) (1-34)
Gg(z)
Mel2) = M (2) = T e v 6 (D) (1-35)
[od
where
2
GB(Z) = MLZ_ (]-35)
2d (z - 1)
v
KRT
Gc(z) = 3;(2—:_77 (1-37)
and
Kz + KIT - K
Gy(z) = B—=r P (sample-and-hold and (1-38)
analog controller)
(2K_ + TK,)z + TK, - 2K
GA(z) = P 2%2 =Y I P (digital implementation (1-39)

of controller)

Substituting Eqs. (1-36) through (1-39) into Eqs. (1-34) and (1-35),
we get the following transfer functions which are used for the computation
of the rms attitute errors in Eqs. (1-31) through (1-33).

With zero-order hold and analog controiler,

2 2
TIK 25 + Koz + (K, T - K)]
My(z) = P IA I P (1-40)
1
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2,.2
M (z) = M(z) = 1 g : (1-41)
where
By = 2325 + (<60, + 2K.T + T2K )22 + (6J. - 4K.T + K.T9)z
1 v v R p v R I
3 2
+ (-2, * 2KpT + KT - K T) (1-42)

With digitally implemented controller,

Tz[(ZKp + TKI)zz + 27Kz + TR - 2K
HD(Z) = AZ (]'43)
M (z) = M_(z) = 21(2° - 1 (1-44)
Mplz) = Mr(z) = -

where

- 3 2 3 2
Az = 4Jvz + (~12Jv + 2T Kp +T KI + 4KRT)Z

3 3 2

+ (120, + 2T - 8K T)z + (KT + Tk - 2T Ky - 49,)
(1-45)
A tabulation method or a numerical method [3] can be used to
evaluate the contour integrals of Eqs. (1-31), (1-32), and (1-33), once
the values of the parameters of the transfer functions are known. Table
1-2 gives the values of (¢Brms)6’ (¢Brms)? and (¢Brms)5 for various

values of the sampling period T.
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Table 1-2.
T Sample-and-Hold with Digitally Implemented
(msec) Analog Controller Controller
B By T
0.01 0.0052  2.932 x 1072 0.0052  2.932 x 107°
0.1 0.0161  9.274 x 107° 0.0161  9.274 x 107°
1.0 0.0508  2.936 x 107° 0.0508  2.936 x 107°
5.0 0.1140  6.599 x 1075 0.1141  6.595 x 1070
10 0.1621  9.3% x 108 0.1622  9.383 x 1078
25 0.2602  1.515 x 107/ 0.2607  1.511 x 1077
50 0.3777  2.216 x 1077 0.3796  2.205 x 1077
100 0.5652  3.368 x 107/ 0.5720  3.339 x 107/

The results tabulated in Table 1-2 show that the rms errors of the

LST with sample-and-hold and the analog controller are very close to those

of the LST with the controller implemented digitally.

It is interesting to show that the rms attitude errors of the digital

LST due to gquantization are related to those of the continuous-data system

in Fig. 1-12.

Applying the 1imit as T approaches zero to Eq. (1-31), we get

1

2nd

-0 -0

Since

Lim M (z) = M(s)
Sl N

. (1 1,.-1
Lim of) = 2im { § MD(Z)MD(Z )z dzo,

]1/2 (1-46)

(1-47)
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where MD(S) is given in Eq. (1-23), and MD(z) is given by either Eq.
(1-40) or (1-43), depending on the way the controller is implemented,

and

1

2z 'dz = Tds

Eq. (1-46) is written

1/2

joo
) T _
Lim o%, = -—w-J M. (sIM.(-s)dso =/To
7 %D [zm _jw DM D

or

ogp = /lf T okp

The meaning of this relation is that the mean-square value of the
attitude error of the continuous-data system is equal to 1/T times the
attitude error of the digital system as T approaches zero. Table 1-3
gives the values of G§D//755'and GET/JTE;'for various values of T.
These values are very close to the values of Ogp = 1.605 and OgT =
0.926 x 10'6, respectively, especially at very small sampling periods.

These relations show that, in general, for small sampling periods,
the attitude error due to a white noise input in a digital system will
be less than that of the same system without sampling. For example,
for T = 25 msec, the rms attitude error oan is 0.2602/55', whereas
98D is 1.605/65 - Therefore, the use of the continuous-data LST model

of Fig. 1-12, as in [1], for the error analysis of the digital LST

results in conservative results.

(1-48)

(1-49)

(1-50)
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Table 1-3.

( T 98D 8T

msec) /f§§ i
0,01 1.644 0.927 x 1070
0.1 1.610 0.927 x 10°°
3 1.0 1.606 0.928 = 1070
_ 5.0 1.612 0.933 x 1070
: 10 1.621 0.939 x 107°
: 25 1.645 0.958 x 10°°
§ 50 1.683 0.991 x 1078
' 100 1.787 1.065 x 10°°

The results in Tables 1-2 and 1-3 again show that for the same

quantization levels, the quantizer in the displacement channel produces

.‘-m“"”’NWMWMM[MMMW

far greater attitude errors than those due to the gquantizers in the rate

and torque channels.

4
2
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1-6. Effects of Quantization on Pointing Stability of the Digital Low-
Cost LST - Quasilinear Analysis, Statistical

In this section the effects of quantization on the low-cost LST
are studied by means of a quasilinearized equivalent-gain approach (a3,
[5]. Although the analysis is conducted in the statistical sense, there
is a basic difference between the present analysis and the one conducted
in Section 1-5. 1In the previous section, the rms attitude error of the
LST is evaluated by treating the quantizers as noise sources that are
stationary Gaussian processes with zerc means. In this section,

the quantizer will be treated as a nonlinear element whose input is

a random stochastic process. An equivalent gain, Keq(z), is derived for
the quantizer. The attitude of the LST is then determined with the quantizer

replaced by Keq(z), and when the system is subject to a stochastic input.

The only restriction with this method is that only one quantizer can be
considered at a time. Since it has been established that the attitude
of the LST is more sensitive to the quantizer QD’ we shall consider only
the system model shown in Fig. 1-14.

The quantizer QD is isolated as shown by the block diagram in
Fig. 1-15a; the input is x(t) and the output is y(t). Figure 1-15b
shows the equivalent gain representation of QD' The equivalent gain

of QD is defined as

B U
[sd
————
S

A
Keq(2) = (b—"lﬁy (1-51)

XX

where @xx(z) denotes the z-transform of the autocorrelation function of

x(t), and ¢xy(z) is the z-transform of the crosscorrelation function of

=
e

A

LI

F

X
o I *
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e Mmm-&w&

L}
Oy FL Gy(2) 6(2) °.

. Gc(z)

Figure 1-14. Digital LST with quantizer in the displacement
: channel .
= i
i ©»
(a)
]
: ., (2) o (z)

Xy
—_— Keq(z) - ——

(v)

Figure 1-15. The representation of the quantizer with statistical
input and output as an equivalent gain.
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x(t) and y(t). In order to derive qu(z), we consider that the input
to QD is a stationary Gaussian process with zero mean so that the
probability function is
(x) exp(-x2/20§)
X) = 1-52

P i o, (1-52)
where o is the standard deviation of x(t).

The crosscorrelation function of x(t) and y(t) is given by

= 1-

0y(0) = | Galetnien (1-53)
where

Qylx(t)] = y(t) (1-54)
is the mathematical description of the quantizer, and

¢, (1)
o= 5 (1-55)
Ix
Thus,
_ 1 © i
by = 3,0 [ qptne (1-56)
X

Taking the z-transform on both sides of Eq. (1-56) and rearranging, we have

¢ (2)

X 1

eal?) " 507y = 5 | Gpena (1-57)

XX o -
X
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Although the equivalent gain Keq(z) is indicated as a function of z,

the nature of the right-hand side of Eq. (1-57) implies that it is

always a constant. It is apparent that although our interest is centered
on the quantizer nonlinearity, in general, the definition of Keq(z) can
be applied to any comman nonlinearities found in control systems.

With reference to the quantizer characteristics of Fig. 1-7,

y(t) = 0 -h/2 < x < h/2

y(t) = -h -3h/2 < x < -h/2

y(t) =h h/2 < x < 3h/2

V() = ~(N-T)h _Zgﬂallh cxs _§2N53)h
y(t) = (N-1)h 23 o (2L
y(t) = -Nn <k 2N§1 h
y(t) = Nh 20010 ¢ x < =

where N is a positive integer.

Equation (1-57) gives

1 -(2N-1)h/2
Keql2) = 7 J-m (=Nh)p(A)AdA

X
-(2N-3)h/2 -h/2

+ J -(N-1)hp(A)rdx + -« + J -hp{(X)Adx
-(2N-1)h/2 -3h/2
3h/2 (2N-1)h/2

+ hp(A)AdA + -+« + [ (N-1)hp(X)rdA
h/2 (2N-3)h/2

+ J ) th(x)xdx] (1-58)
(2N-1)h/2
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] 3h/2 (2N-1)h/2
( (z) = % |n f S(Ad + - ¢ 2(N=T)h J 5()adA
€q o h/?2 (2N-3)h/2

e e

)
+ 2N I o(\)AdA (1-59)
(2N—])h/2

Since all the integrals in the last equation have the same integrand,

we evaluate one of the integrals as follows:

3h/2 3h/2 exp(-xz/zci)
J p(A)Ada = [ — AdA (1-60)
h/2 h/2 ven o,
Let
_ 2,52
u= A /20x
Then
du = A%% or Adh = oidu
[0}
X
and
3h/2 : 9h2/8o§
I p(A)ady = — J > 2 exp(-u)oxdu
h/2 v2m Jp /80",
2 2
_ ( 9h e
= 7 Ox lem(- ~8—0—2) + exp(- 802) (1-61)
X X

Thus, the equivalent gain for the quantizer with 2N levels of quantization

is

A e e .
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2 2 2 2.2
i 25 -
eq(Z) =/% E}b_ exp(_ _h_z_) + exp(- 9_‘?_) + p(_ hz) + o0+ exp(- i_z_!!._‘_%_b—-)
X 8o 8¢ 8o 8o
X X X X
(1-62)

Although the equivalent gain has been derived from QD’ the
response of the closed-loop system of Fig. 1-14 cannot be determined
by using Keq(z) directly, since O the standard deviation, of x(t)
is not known. The analysis procedure is outlined as follows:

For a given O which is the rms value of the input,

(1) The equivalent gain Keq(z) is computed using Eq. (1-62) for

various values of Oy~

(2) The values of o, that correspond to the various values of Keq(z)

obtained in step (1) are calculated from

o = |3 § r*lx(z)Mx(z")':>‘.,c(z)z”dz]”2 (1-63)
where

M(2) = % Keq(z)GA(z%GBTz) ¥ (2) (1-64)
and

) -

It is assumed that the input of the system is a white noise.

The solution of oy for the given . is determined when there is

a match between o, from Eq. (1-63) and that used in step (1).
(3) The rms attitude response of the system is determined from
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1/2

o * [5%3 ﬁ M(z)M(z'])icc(z)z']dz] (1-65)

using the Keq(z) which corresponds to the o obtained in
step (2).

For the LST system, a quantization level of h = 0.003 is selected
for QD. The quantizer is assumed to saturate after 5000 increments; that
is, N = 5000 in Eq. (1-62). A digital computer program is prepared
which automatically cuts off the series of Eq. (1-62) when an additional

6 to the entire result. The sampling

term is contributing less than 10°
period T is chosen to be 25 msec, and the system transfer functions GA(Z),
GB(z), and Gc(z) are given by Egs. (1-38), (1-36), and (1-37), respectively.
Following the procedure outlined above, the results of the analysis with

several vaiues of 9. are tabulated in Table 1-4.

The resuits in Table 1-4 show that for a given set of quantization
and saturation levels, both small and large input signals cause the
quantizer to act as an attenuator. The true characteristics of the system
as a function of the input<%:aredisplayed by normalizing Og- The last

column in Table 1-4 represents the normalized output IpN’ which is

defined as
o
B
, Opn = (1-66)
% BN OB]OC
; where
3 98y = 9 at 0. * 1. (1-67)

EE AR R S ks
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Table 1-4.
Input : No. of terms Qutput Normalized

s 5 K used in Keq(z) s output

C X eq B 98N

-4 4 -5

5x 10 5.318 % 10 0.075 2 5.20x 10 0.4

1073 1.086x10°3  0.797 3 2.40x 1074 0.92

1072 1.093x107% 1.0 19 2.68x 1073 1.0

107" 1.093x107' 1.0 176 2.60x 1072 1.0

1 1.093 1.0 1753 2.60x 107! 1.0
§ 10 10.87 0.836 5000 2.383 0.916
i 50 53.37 0.22 5000 6.88 0.529

Figure 1-16 shows the plot of Keq(z) versus g The plot has the

X"
significance of a "statistical describing function" of the quantizer. This

R 4wt e e e

plot shows that for small inputs, when the input magnitude is comparable to

s -

the quantization level, h, the gain drops helow unity, and the quantizer is
attenuating the signal. For larger inputs the quantizer appears as a unity-
gain element in a statistical sense, and for very large inputs, where the
input magnitude is comparable to maximum output (N levels of h), the
quantizer gain again reduces, and the input is attenuated.

Figure 1-17 gives a plot of o, versus o, wnich represents the solution
of Eq. (1-63) and step (1) for the range of O cons idered.

Figure 1-18 shows a plot of Ogy Versus Oc- [t is seen that the normalized
output reduces from unity in the ranges of 0. wher Keq(z) is less than 1.

As an interesting comparison, the statistical method of Section 1-5

assumes Keq(z) = 1 for all values of o. and, consequently, it always yields




T TR R R T e T e T e

D A . -

oy 1 [ w . % N AN | ! :
o || | M ; 9L-1 dunbLy _ , _

ot M w R S i m “ |

: | i ” ; . | . .

“ ~ oL . ol L .ol 0 | L -0l _

— | , . 1 z ~ £ . SR—

- | | .w m

| | |

. [ . X A
e - S » - e e w - - N Q —

. 1 .

. W _ M

S i S .” .

. B ” e | et
- I POPRER

“ | ba

et W - (z) A

4 !
| et e e e e - - JR U uxwy J— - —— - w.OA SNV, |
.ﬂ | w : A
; w | |
. “ n 0l
| w, |
| ‘ ; _
| | i

( ( o v o ~




S _v “
- : ‘
. iR “[1-1 panbry! B
T | » . - . . | | 0 |
s M _ R O _ . |
. | 2 g o ‘ w .
| . . | RS S SO S ¥ ” s . | fz
A ! n . P , _ : P N , o v
| H : 1] 3 - _ , | g
M | i q g _.
_ M ! , — w - | | o .
| __ | , | ! _ : R )
N ! _ | , w
W . w ’ _H ~ . . M. s e | | M . |
| S S S—— w | h . M
Hamaan ; _ : | m - | *
| m | SO W i
W W | 4N B BT
w | . . . - 1.1.1110”!1; ) ‘
B « | , | _ _ , xo
i o o | ,
T.l‘»t.\l\'|“||.00ltll w! m | | |
w | o _ , N P
H w ) - —— e—— ‘ - o—
o | | S/ ”
|
w - JUREPUUIN R
. : e e s et |
A | | M ,, a
N ‘ o
- - ., _ ) | n! ,
N | W 3 ;
| ) - ﬁ H
w ﬁ - = = . - - | . “
“ ¢ e s bt ¢ ————- - — | “ < h
! | “ ” ,,
m. | _ . : : 0t
H ) , » (w ‘ . .,
) i | ; .
! “ d “
t ‘ x w ”
! , _ , w
i . B | w A w , ~
- . ] m ~_ A ., " _
| , ‘ m m - — O . e e e 4 ——— —
_,v N ‘ - .‘l i .’




T T BERE A - TR (V11T F I I i : 1
o i H i ' . . PN . . fe) # . i H R
T : Lo 5 ! _ _
. . i . ‘ . . . . . . - N . . . . +
T A Yeepee - ﬂ T YEEEET T UEEE. , - UETEe o yeE o o oougepto T
B . . { RN e R . \ 1 L. H R
S , 0ol i DL L i Dl { _0L 0] :
. il L . i A i M 4 o 2 ]
. Vo | | } : .
' . 1 ‘ ' ' !
} | i : P i .
. _ _ U TN S I S M X
o | . , i ' ; .
* M . : M j o
SRRSO S e - - [ U SN G SRS A et
. | . : ﬂ
i _ i | |
(S S - et i R v.,o.iﬁniail
. i . - . )
R | m ” ,
S S—— ISR, SRS > N ~ - -19:0-———
3 W | N,
m |
S . . e BRI N e {870 !
| |
- e m _ m m
_, ! | ,
| i W "
_ _ _ . _
...... - [EUSDUURSS SO : . . ” . - O —. !
w . “ | | | w
i m }
\ { | ;
T | _ | ” H !
i i ] ! I t
m W ! m |
s * w J

( ( npso At ( e e




41

a result of opn - 1. In this sense that method is more conservative and does
not recognize the severity of the nonlinearity due to the quantizer at

very small and very large input magnitudes.

}
H
3
H
H
H
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